Bitcoin SV 开发技术与工具概览 2.0

Gu Lu, 2021.04

Bitcoin SV 1st Bootcamp

Overview

- 协议 Protocols
- 工具 Libs & Tools
- 服务 Services
- 框架 Frameworks
- 理论 Theory

- nChain Tech
- Xoken Tech
- Sensible Tech

协议 Protocols

the bitcoin whitepaper

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto satoshin@gmx.com www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without going through a financial institution. Digital signatures provide part of the solution, but the main benefits are lost if a trusted third party is still required to prevent double-spending. We propose a solution to the double-spending problem using a peer-to-peer network. The network timestamps transactions by hashing them into an ongoing chain of

交易

交易,是比特币的核心目的。链状的签名只是一种实践。

第一性原理: 打破知识的藩篱,回归到事物本源去思考基础性的问题,在不参照经 验或其它已有系统的情况下,从物质/世界的最本源出发思考事物/系统。

时间

时间的不可逆特性,被固化为"区块",由 POW 保证。

P2P 节点网络

激励 & 诚实

效率 & 优化

尺寸优化,SPV,良好的 UTXO 集管理

隐私 & 信任

"去掉 trusted third party" 所带来的实际效用

理论

实践

 目的
 交易(第一性原理)
 链状签名

 方式
 时间(不可逆性)
 链状区块 & POW

增长 P2P 节点网络 激励 & 诚实

效率 极大规模下的可持续性 紧凑化、SPV & UTXO 管理

体验 保护隐私,降低信任成本 去除第三方、公私钥管理

Bitcoin: A Peer-to-Peer Electronic Cash System

协议 Protocols

应用层协议 (B/C/D/BCAT)

数据的存储和索引

metanet

数据的结构化组织

库

• bitsv (Python)

bsv (JavaScript)

工具

sCrypt

服务

MetaSV

whatsonchain

Sensible API

框架

• runonbitcoin

MetalD

Sensible Contract

理论

craigwright.net

Theory of bitcoin (on Youtube)

协议 Protocols

工具和库 Libs & Tools

服务 Services

框架 Frameworks

理论 Theory

• nChain Tech

• Xoken Tech

• Sensible Tech

nChain Tech

mAPI fee discovery; tx submission

SPV tx & utxo validation

nakasendo threshold signature

SPV Channels (incorrect)

SPV Channels 依托于矿工网络的高效 P2P 通信

- 借助矿工网络(高效, scalable)
- 端对端加密(无许可通信)
- NAT 穿透 (peer 主动发起连接)
- 消息缓存(客户端可离线)

兼具 P2P 和中心服特性

不准确的说法!

2020年10月 BSV 开发工具技术概览资料

SPV Channels (revised)

SPV Channels 中心服辅助通信

- 端对端加密(无许可通信)
- NAT 穿透 (peer 主动发起连接)
- 消息缓存(客户端可离线)

一个典型的中心化 消息业务服

2021.04 修正

TouchStone

依托于矿工网络的 P2P 加密通信

协议 Protocols

工具和库 Libs & Tools

服务 Services

框架 Frameworks

理论 Theory

• nChain Tech

Xoken Tech

• Sensible Tech

Infrastructure

TeraNode

Xoken

Massive Distributed

Parallel TX processing

Transpose Merkle Tree (TMT)

通过转置所有中间的缓存节点,使得由叶节点向根节点的遍历直接包含了所需的默克尔证明。所有的叶节点和根节点,仍保持原位置不变。

通过对默克尔树一次预处理并存到 Graph DB 里,极大地降低了处理T级区块

的内存占用,这样(即使树莓派这样的)运算单位也能处理 T 级区块了

Xoken – NEXA

- 高性能处理 T 级区块的 SPV
- Neo4j (Graph DB) 对 TMT 友好
- TMT 实现针对 T 级默克尔树计算的极低资源开销
- Haskell 惰性求值实现 tx 流式处理

Xoken – VEGA

分布式,并行,长 tx 链友好,重组友好,TMT,bitcoin sharding

- Fully distributed transaction processing cluster, scale-out by adding more nodes.
- Massively parallel transaction processing Parallel Fork/ Block/ Transaction processing
- Virtually instantaneous chain-reorgs, no additional processing required to accommodate the chain re-organizations.
- Sharding done right: ensures low cross-shard communication (storage and compute nodes), and is thus a "true scale-out" solution, i.e. provides linear or near-linear increase in performance
- Potentially Unlimited chained transactions can validate tx–chain in logarithmic time

Xoken

Massive Distributed Parallel TX processing

交易,是比特币的核心目的。

物理存储,拓扑结构,代码实现在这一层不重要。(第一性原理)

Token Solutions

Tokenized Centralized Regulation friendly

Fabriik SFP Centralized UTXO + OP_RETURN

Badge Open-source Processor UTXO + OP_RETURN

CUP 3rd Party Authentication Lightweight Contract

BTP UTXO-Set in Oracle Full-featured Contract Payload

协议 Protocols

工具和库 Libs & Tools

服务 Services

框架 Frameworks

理论 Theory

• nChain Tech

• Xoken Tech

• Sensible Tech

Sensible Tech

1. <u>full-featured contract logic</u>

no stateful oracle

no 3rd-party authentication

2. full-featured contract data payload

verifiable critical fields

no op-return for this

3. fully decentralized

miner validation

no need for authenticator / validator

4. "bitcoinic"

suite well with metanet

support SPV exactly as same as bitcoin

Sensible Tech (comes at a price)

- 1. full-featured contract logic
- 2. full-featured contract data payload
- 3. fully decentralized
- 4. "bitcoinic"

comes at a price:

a minimal signature service (external)

2. heavy–weighted scripting (bigger size)

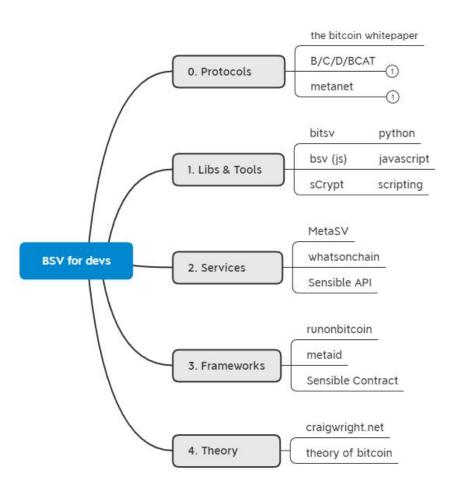
BCPs

```
BCP 01
       NFT
BCP 02
       Token (FT)
BCP 03
       Unique Contract
BCP 0x ...
       (to be revealed)
```

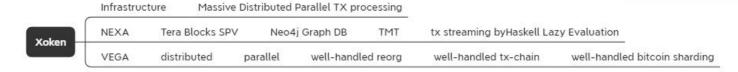
"automation of agreements with easily definable transaction steps"

the "official narratives" about contract

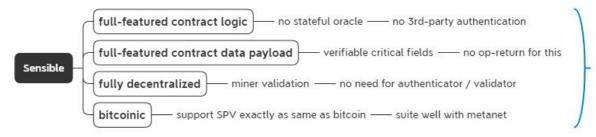
Review


- 协议 Protocols
- 工具和库 Libs & Tools
- 服务 Services
- 框架 Frameworks
- 理论 Theory

- nChain Tech
- Xoken Tech
- Sensible Tech



Take-away


Bitcoin SV 开发技术概览 (v0.2) 2021.04.08 Gu Lu

"automation of agreements with easily definable transaction steps"

 the "official narratives" about contract

comes at a price:

- a minimal signature service (external)
- heavy-weighted scripting (bigger size)

Thank you

Gu Lu

